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We present an effective contour model for electrical discharges deduced as the asymptotic limit of the
minimal streamer model for the propagation of electric discharges, in the limit of small electron diffusion. The
incorporation of curvature effects to the velocity propagation and not to the boundary conditions is a feature
and makes it different from the classical Laplacian growth models. The dispersion relation for a nonplanar
two-dimensional discharge is calculated. The development and propagation of fingerlike patterns are studied
and their main features quantified.
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The electrical breakdown of various media is usually
caused by the appearance and propagation of ionization
waves and, in particular, streamers. The difficulties for the
understanding of these important and interesting phenomena
are both experimental and theoretical. From experimental
point of view, the historical lack of quantitative data, from
small to large scales discharges, are mainly due to the fast
time scales of the processes involved. Recently this situation
is starting to change with the development of experimental
techniques. On the other hand, the theory is still far from
being complete. Even in the simplest hydrodynamic approxi-
mation for describing the phenomena, it is necessary to solve
a nonlinear system of balance equations, together with Pois-
son equation, which poses a challenging problem both nu-
merical and analytical. Among the recent progress in the un-
derstanding of the propagation mechanism we can mention:
the study of stationary plane ionization waves �1,2�, first self-
similar solutions for ionization waves in cylindrical and
spherical geometries �3,4�, and the formation of streamers as
the result of the instability of planar ionization fronts �5–7�.
In the simplest hydrodynamic approximation, the fronts are
subject to both stabilizing forces due to diffusion which tend
to dampen out any disturbances and destabilizing forces due
to electric field which promote them.

In this Rapid Communication we introduce and justify
theoretically a contour dynamical model which allows us to
make some progress in two-dimensional �2D� and three-
dimensional �3D� more general situations. Here we will use
ideas coming from the context of electrohydrodynamics.
More precisely, we will arrive at a model similar to the cel-
ebrated Taylor-Melcher leaky dielectric model for electrolyte
solutions �8� but suitably adapted to the context of electric
�plasma� discharges. We will obtain the dispersion relation
for 2D discharges such as those described in some experi-
ments �9�.

For our contour model, in the asymptotic limit of small
diffusion D�1 �electron diffusions are typically of order
0.1 m2 /s, and since typical velocities and streamer size �9�
are 105 m /2 and 10−2 m we get D of order 10−3�, the inter-
face will move according to

vN = − E�
+ + 2�D���E�

+�� − D� �1�

being vN the normal velocity and � twice the mean curvature
and ��E�

+� to be defined below. The free charge density on

the boundary will be concentrated in a diffuse layer, and for
the limit considered, its behavior will be characterized by a
negative charge surface density � given by

��

�t
+ �vN� = −

E�
−

�
− j�

−, �2�

where j�
− is the current density coming from the ionized re-

gion ��� to its boundary ���� in the normal direction and �
is related to the resistivity of the plasma. E�

	 is the normal
component of the electric field at the interface when ap-
proaching it from the region without or with plasma, i.e.,

E�
+ = lim

x→����+
�−

�V

��
�, E�

− = lim
x→����−

�−
�V

��
� , �3�

with V found by solving


V = ���r − r��� . �4�

Notice that in the case �−1�1, we arrive to Lozansky-Firsov
model �10� with a correction due to electron diffusion, mean-
while in the limit D=0 we arrive at the classical Hele-Shaw
model. Such a model is known to posses solutions that de-
velop singularities in the form of cusps in finite time �11�,
but when regularized by surface tension corrections, the in-
terface may develop various patterns including some of frac-
tal type �see �12� for a recent development and references
therein�.

Let us derive Eqs. �1� and �2�. We start from a minimal
model of the discharge that in dimensionless units reads as
�5,15�

�ne

�t
− � · �neE + D � ne� = ne���E�� , �5�

�np

�t
= ne���E�� , �6�

� · E = np − ne, �7�

with ���E��= �E�exp�−1 / �E��. Next we derive a contour dy-
namics equation for the evolution of the interface between
the region occupied by the plasma and the region free �or
with a very small density� of plasma. Note that this interface
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does not exist as such but, as in the case of planar fronts, the
region where ne jumps from values close to 1 to values close
to 0 has a thickness O�D1/2� �7�. Here we will give an equa-
tion valid in the asymptotic limit D�1.

We take a level surface of ne representing the interface
and introduce local coordinates 
 �along the level surface of
ne� and � �orthogonal to the level surface of ne�. Since the
front thickness is O�D1/2� it is natural to introduce �=D1/2�,
so we can write approximately

D
 =
�2

��2 + �D�
�

��
+ D�
� − �2�

�

��
� + O�D3/2� ,

where 
� is the transverse Laplacian and � is twice the mean
curvature in 3D or just the curvature in 2D �see, e.g., �13��.
Hence from Eqs. �5� and �7�

�ne

�t
− E


�ne

�

− � E�

�D
+ �D�� �ne

��
−

�2ne

��2

= ne����E�� + np − ne� + O�D� .

We expand now �E� and np at the diffusive boundary layer
as explained in �6,7�, so it is straightforward to end with

�ne

�t
− E


�ne

�

− � E�

�D
− 2���E�� + �D�� �ne

��
= O�D1/2� ,

�8�

where a curvature term appears and is relevant provided 1
���D−1/2. Equation �8� is a transport equation for the elec-
tron density so that the level line of ne that we have chosen to
describe the evolution of the interface moves with a normal
velocity given by Eq. �1�. Notice that the tangential velocity
does not change the geometry of the curve during its evolu-
tion. Nevertheless, tangential exchanges of charge affect the
evolution through the dependence of vN on E�.

Next we describe the charge transport along the interface.
We trace a “pillbox” D around a surface element. The region
D will be such that 

�
� and will contain both the diffu-
sive layer for ne and the region where ne−np �the net nega-
tive charge� has significant values. If we subtract Eq. �6�
from Eq. �5� and integrate over D we find

�

�t
	

D
�ne − np�dV = 	

�D
�neE + D � ne� · ndS

=�neE�

��=−�
� + O�D1/2� , �9�

where we have used that ne→0 for �=� /�D�1, ��ne�→0
for ����1 and we have neglected the contributions of the
lateral transport of charge by E
 in comparison with ex-
change of charge with the bulk by E�. This assumption is
also common in the Taylor-Melcher model and we will fol-
low it. Notice that

�

�t
	

D
�ne − np�dV =

�

�t
	

−�

�

�ne − np�

d� =
�

�t
��

� ,

�10�

and the length �or area� element of the surface will suffer a
change during interface deformation given by

�



�t
= �vN

 . �11�

We can also include a source �an insulated wire inside the
plasma, for instance at x0, carrying a electric current I�t��.
This source will create a current density inside the plasma,
and as quasineutrality is fulfilled, we will have for the inte-
rior of �

� · j = I�t���x − x0� . �12�

By putting Eqs. �9�–�12� together we can finally write Eq.
�2�, where � is the effective resistivity of the medium, given
in this case as �−1=lim�=−�ne and E�

− is the normal compo-
nent of the electric field when approaching the interface from
inside the plasma region. j�

− is normal component of the cur-
rent density given by Eq. �12� arriving at the interface. There
is a jump in the normal component of the electric field across
the interface given by

E�
+ − E�

− = − � . �13�

Equation �2� will provide the surface charge density � as a
function of time. From it, we can compute the electric field
and move the interface with Eq. �1�. Two limits can be easily
identified in the case of j
0: �a� the limit of large conduc-
tivity

�−1 � 1, E�
− = 0 ⇒ V = C�t�

so that the interface is equipotential and �b� the limit of small
conductivity

�−1 � 1,
�

�t
��

� = 0 ⇒ �

 = const,

where the charge contained by a surface element is constant
and the density only changes through deformation �with
change in area� of the interface.

Next we study as an application a 2D case. The 2D case is
not at all academic as there have been experiments where a
two-dimensional streamer discharge is created on a surface
and branched pattern are observed. In Fig. 1 we can see a
numerical simulation intended to mimic the experiment of
�9� using Eqs. �1� and �2�. This set of equations also allow us
to calculate the dispersion relation for the front stability and
give some analytical insight.

Let us write the position and the charge “surface” density
of the interface as

r��,t� = r�t� + �S��,t� , �14�

���,t� = −
Q�t�

2�r��,t�
+ ����,t� , �15�

where r�t� is the solution of the equations for the radial sym-
metrical front, Q�t�=�0

t I�t�dt and � is our bookkeeping small
parameter for the expansions that follow.

We will start calculating the correction to the electric field
due to the geometrical perturbation of the surface and the
extra charge deposited on it. The electric potential will be up
to delta order ��x�=V�x�+�Vp�x� being V the solution for
the symmetrical problem. The term Vp�x� will satisfy the
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equation 
Vp=O��� and further on, we will change coordi-
nates to x→ x̃=xr�t� /r�� , t� so the perturbed surface be-
comes a disk of radius r�t�. Now at zero order Vp satisfies the
Laplace equation with the boundary being a disk. Hence we
have in the new polar coordinates

Vp�r̃,�� = �

1

�

�n cos�n��� r

r̃
�n

, r̃ � r



1

�

�n cos�n��� r̃

r
�n

, r̃ � r ,� �16�

where we have imposed the conditions of Vp remains finite at
the origin and becomes zero at very large distances. The
potential at the surface position coming from the exterior is
��xs

+�=−Q�t�log�r�� , t�� /2�+�Vp�xs
+� and from the interior

is ��xs
−�=C�r�t� , t�+�Vp�xs

−�, where C�r�t� , t� is a function
independent of �. So if we write the surface perturbation as

S = 

n=1

�

sn�t�cos�n�� , �17�

imposing the condition of continuity for the potential, we
find that the coefficients of the potential in Eq. �16� are re-
lated by

�n = �n +
Q�t�
2�r

sn. �18�

Now we can calculate the electric field to � order. Changing
back coordinates, from x̃ to x, the normal components of the
electric field at both sides of the surface are

E�
+ =

Q�t�
2��r + �S�

+ �

1

� ��n +
Q�t�
2�r

sn�n

r
cos�n�� ,

E�
− = − �


1

�

�n
n

r
cos�n�� .

Then, the jump condition �13� together with Eq. �15� give the
following expression for the charge perturbation:

� = − 

n=1

� �2�n +
Q�t�
2�r

sn�n

r
cos�n�� , �19�

where r=r�t� is the evolving radius of the unperturbed circle,
i.e., the radially symmetric solution to Eqs. �1� and �2�.

We still need the expression of the curvature at � order to
find the dynamics of the front. In polar coordinates, after
introducing the perturbation �Eq. �14��, the curvature turns
out to be

� =
r2 + 2rS� − rS��� + O��2�

�r2 + 2rS�� + O��2��3/2 =
1

r
−

S + S��

r2 � + O��2�

and the normal component of the velocity

vN = v · n =
dr�t�

dt
+ �

�S��,t�
�t

.

Now Eqs. �1� and �2� after introducing the perturbations to
first order, defining �=D, and doing some algebraic manipu-
lations yield

dsn

dt
= − � Q�t�

2�r2 �n − 1� +
�

r2 �n2 − 1��sn −
n

r
�n, �20�

d�n

dt
= � Q�t�

2�r2�Q�t�
2�r

+
�n + 2��

2r
− �1/2����Q�/2�r��

��n − 1� −
I�t�
4�r

�sn +
1

2
� Q�t�

2�r2n −
1

�
��n. �21�

Thus the time evolution of each particular mode has been
obtained and it is governed by Eqs. �20� and �21�. First let us
study the limit of ideal conductivity. It makes �→0 so we
can see from Eq. �21� that �n→0. Physically it means that in
the limit of very high conductivity, the electric field inside
goes to zero �E�

−→0�, as we approach to the behavior of a
perfect conductor. If we consider that Q�t�=Q0 is constant or
its variation in time is small compared with the evolution of
the modes �which also implies I�t�→0� and the same for the
radius of the front r�t�=r0, we can try a solution
sn=exp��nt� , �n=0, to our system, and we get a discrete
dispersion relation of the form

�n = −
Q0

2�r0
2 �n − 1� −

�

r0
2 �n2 − 1� . �22�

Next we consider the limit of finite resistivity, but such
that the total charge is constant at the surface, or varies very
slowly. Writing Eq. �21� as

d�n

dt
= −

d

dt
�Q�t�

4�r
sn� −

Q�t�
4�r2

dr

dt
nsn −

1

2�
�n,

we have now
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FIG. 1. �Color online� The evolution of an initial arbitrary front
with a constant net charge Q=30 and D=0.1.
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d�n

dt
= −

Q0

4�r0

dsn

dt
−

1

2�
�n.

For a small enough conductivity, so no extra charge reaches
the surface, we find �n=−

Q0

4�r0
sn, and with sn=exp��nt�, Eq.

�20� yields

�n = −
Q0

2�r0
2�n

2
− 1� −

�

r0
2 �n2 − 1� . �23�

In a curved geometry we can see that the modes are dis-
crete. If we compare Eqs. �22� and �23�, for n=1 corresponds
the same �1=0 which reveals the translation invariance of
the front. However, for small n, there is a 1/2 factor discrep-
ancy in the dispersion curve between the two limits. In �14�,
the origin of this prefactor was discussed for planar fronts
�the dispersion relation for planar fronts was obtained in the
case of constant charge in �7��. So imposing constant charge
at the surface, this factor is independent of the planar or
curve geometry. On the other hand, imposing constant poten-
tial at the surface gives a factor of one. The intermediate
situations can be studied by solving systems �20� and �21�.
Another consequence is that in both cases the maximum
growth correspond to a perturbation with

n � �Q0�/D , �24�

implying that the number of fingers increases with the net
charge and decreases with electron diffusion.

To test the analytical predictions, we have calculated nu-
merically the dispersion relation curves for these two cases.
In Fig. 2, for different charges �1=0, the slope increases
with the amount of charge, the maxima moves to higher
modes, and for larger ns the dispersion curves become nega-
tive as predicted by Eq. �23�. In the inset of Fig. 2 the dis-
persion relation curve is calculated for the case of constant
charge and constant potential. The slope around the origin
n=1 is bigger for the case of ideal conductivity when the
interface is equipotential. The ratio of the slopes can be es-

timated as 
0.49 which is in agreement with our prediction
of 1/2 �see �14��.

To conclude, we have introduced a contour dynamics
model á la Taylor-Melcher �8� for the streamers discharges.
Our model contains as a particular limit the Lozansky-Firsov
model �10� with a correction due to electron diffusion which
effectively acts as a surface tension. In the limit D=0 the
classical Hele-Shaw model �11,12� is recovered. In this
framework we have studied the stability of 2D discharges. It
is our hope that this model can open the door for the study of
3D problems of streamer discharges in realistic geometries.
An extra advantage of this model is its relatively low com-
putational cost and the high analytical insight which pro-
vides.
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FIG. 2. Dispersion relation for the discrete modes of a pertur-
bation keeping the charge constant for different charges Q=−Q0. In
the inset, the case Q=10 is compared with the case of ideal con-
ductivity �cross points�.
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